

Queensland, Australia

R&D, MANUFACTURING & LAUNCH

Founded in 2013 by brothers, Adam & James Gilmour.

Australia's largest space manufacturer with 170+ staff building launch vehicles and small satellites in QLD.

Largest VC-backed space company, with \$150+ million in venture capital and govt/defence grants to date.



One Vision suborbital launch

TECHNOLOGY HIGHLIGHTS

A world leader in orbital-class hybrid rocket technologies.

- 2016: First launch of hybrid rocket using 3D printed rocket fuel.
- 2019: Developed and tested own semi-autonomous mobile launcher for a suborbital rocket campaign.
- 300+ rocket engine tests ranging from 50N to 120kN using three oxidiser systems.
- Developing hybrid and liquid rocket engines for Eris.

Targeting first Australian rocket launch in early 2023.

Q2 and Q4 2023 ERIS BLOCK I

150 kg to 500 km Equatorial Orbits / 100 kg to 500 km SSO

Payload fairing diameter: 1.5 m

Dedicated launch, rideshare

Responsive, ITAR-free access to space

001

H1 2024 ERIS BLOCK II

Launch and replacement of small satellites into targeted and specific LEO.

1000 kg to 500 km Equatorial Orbits \ 750 kg to 500 km SSO

Payload fairing diameter: 2.8 m

Dedicated launch (rideshare options)

LEO

2025

ERIS HEAVY

Larger payloads and multiple constellation deployment into geostationary (GEO) and low lunar orbits (LLO).

Up to 4000 kg to LEO

Leverages Booster from Block 2 with addition of side boosters

Payload fairing diameter: 3.2 m

LEO, MEO, GEO, Lunar

LAUNCH TIMELINE

2023 **ERIS BLOCK I**

2024 **ERIS BLOCK 2** 2025 ERIS BLOCK 2 ERIS HEAVY

2025

009 (Q4)

001 (Q2)

002 (Q4)

003 (Q2)

004 (Q4)

CARAVAN 1

005 (Q1)

006 (Q2)

007 (Q3)

008 (Q4)

SNAPSHOT: ERIS BLOCK I

Locations:

R&D and Manufacturing: Gold Coast, Queensland, Australia

Launch site: Bowen Orbital Spaceport, north QLD

SNAPSHOT: BOWEN ORBITAL SPACEPORT

Australian launch site

- Low- to mid-inclination orbits, 25-60 degrees
- Local govt & community support
- ITAR-free

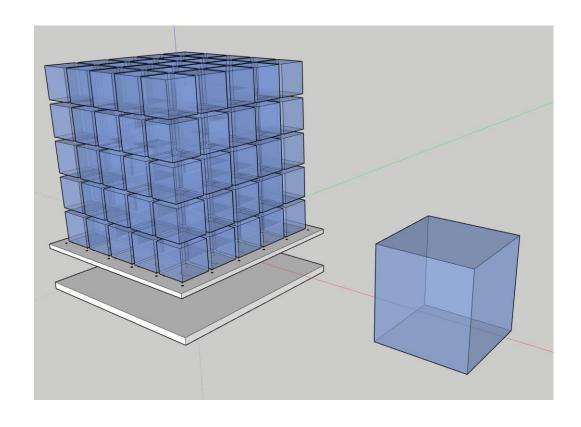
G-CLASS SATELLITE BUS

G-SAT

A new standard for Small Satellites

Modular, Scalable, Launch Agnostic

100 kg dry-mass


Professional grade (fully dual-redundant)

Standard Engineering Factor (SEF)

- Structure and Bus 25kg
- Power up to 1500W (batteries, solar panel)
- Payload: 75kg (mission driven)

KANGAROO: HOSTED PAYLOAD MISSION

Metrics	Baseline
Payload Available Volume (Cubesat units, U)	125U
Payload Available Mass (kg)	60kg
Payload Available Power (Watts Orbit Average)	50W
Typical Data Volume return (per day)	127.5 Gbytes
Pointing Accuracy (3 sigma)	0.3 degrees
Typical Latency (90 th percentile) (from data capture to downlink)	90 minutes
Propulsion	Bi-prop for orbit maintenance, collision avoidance & deorbit.
Design Lifetime	4 years
Typical Development Lead Time (Contract KO to Flight Readiness Review)	24 months

G-SATELLITE: SEPARATION RING TEST

GENERAL ENQUIRIES info@gspacetech.com

ROCKET & SATELLITE ENQUIRIES launch@gspacetech.com

Follow Us

f 🕑 in 🔼 gspacetech.com